
Week 5 - Friday

 What did we talk about last time?
 Dictionaries
 Statistics
 Mean
 Median
 Mode

 Format:
 Multiple choice questions (~20%)
 Short answer questions (~20%)
 Programming problems (~60%)

 Written in class
 No notes
 Closed book
 No calculator

 The famous mathematics educator George Pólya outlined a
series of steps for solving problems:
1. Understand the problem
2. Make a plan
3. Execute the plan
4. Look back and reflect

 Each type has losts of literals associated with it
 A literal is a concrete value within a given type

Type Examples Notes

Integer
37
0
-15

Floating-point values
2.75
6.02E23 Scientific notation is allowed

Strings
'Trouble'
"Funk"

Either single quotes or double quotes
can be used

Boolean
True
False

Lists [2, 3, 5, 7, 11, 13] Marked with square brackets

Dictionaries
{1 : 'Fellowship of the Ring',
2 : 'Two Towers',
3 : 'Return of the King'}

Marked with curly braces

 It is also possible to create variables for each data type
 Think of a variable as a "box" that you can put values into
 The name of a variable is an identifier
 The type of a variable is whatever you've most recently put into it
 The following creates a variable called i that currently holds an

integer
 Then, we multiply i by 3 and put it in another variable

i = 42
tripled = 3 * i

 Python variables are not like variables in math which have a fixed (but
unknown) value

 Instead, a Python variable can be changed by a line of code
 We use the assignment operator (=) to change the value of a variable as

follows:

 The first time, 3 * i is 126, but the second time, it's 15

i = 42
print(3 * i) # prints 126
i = 5
print(3 * i) # prints 15

 Variables have to start with a letter (or an underscore) and then can have
letters, underscores, or numbers

 Spaces aren't allowed in a variable name
 The book uses camel-case
 To make it more readable, each word in a multi-word variable name is capitalized

awesomeVariable = 15

rainfall = 2.61
top10 = 21
5fingers = 19
first number = 42

Legal

Illegal

 Python has a number of operators that work with integers and
floating-point (decimal) numbers

Operator Operation Example Result
+ Add 5 + 7 12

- Subtract 5 - 7 -2

* Multiply 5 * 7 35

// Integer division (round down) 5 // 7 0

/ Regular division 5 / 7 0.7142857142857143

% Modulo (remainder) 5 % 7 5

** Exponentiation 5 ** 7 78125

 You can do complicated expressions
 Just like math, there's an order of operations that determines

which operations happen first

Operator Operation Evaluation Order
() Parentheses Left to right
** Exponentiation Right to left

* // / % Multiplication and division Left to right
+ - Addition and subtraction Left to right

print(3 * (4 + 2) / 8) # prints 2.25

 In math, there's no difference between 3 and 3.0
 In Python, the difference is there, but it's subtle
 You can convert between the integers and floating-point

variables using the following functions

Function Description Example Result
float(number) Convert to floating-point float(15) 15.0

int(value) Convert to integer, dropping
fractional part

int(2.7) 2

round(value) Round to the nearest integer round(2.7) 3

 Basic output is done with print()
 Put what you want to print inside the parentheses
 You can print:
 Any text enclosed in single or double quotes:
print('43 eggplants')
 Any integer:
print(43)
 Any floating-point number:
print(23.984)
 Even complex numbers:
print(5 + 7j)

 If you want multiple things to go on the same line, you can use print() with more than
one argument:
print(99, 'red', 'balloons')

 By default, they will be printed with a space between each one

 Python is a case sensitive language
 Print is not the same as print
 print('Word!') prints correctly
 Print('Word!') causes an error

 Python doesn't care about whitespace within a line of code

is the same as:

 However, whitespace at the beginning of a line of code matters!
 The following will cause an error:

 Indentation is important in Python, so don't indent without
reason!

print('Hello, world!')

print ('Hello, world!')

print('Hello, world!')

 Single line comments use #
 Everything after the # is a comment and doesn't affect the execution of the

program

 Sometimes, you want to comment out a section of code to see what happens if
it doesn't run

 To do that in Python, put triple apostrophe (''') on a line by itself before the
code and another after

print('Hi!') # this is a comment

'''
print('Hi!')
print('Bye!)
print('No one will see this!')
'''

 A really powerful tool in most programming languages is the
ability to package up some code into a chunk that you can use
over and over

 This idea has different names in different languages:
 Function
 Method
 Subroutine
 Procedure

 A key feature of functions is that they can take zero or more
arguments that allow you to tell the function to do different things

def name(arg1, … , argn):

statement1
statement2
…
statementm

Function name

Name of
last argument

Name of
1st argument

Required syntax

Code done by function
(must be indented)

 Like most code in Python, the code inside of a function
executes line by line

 Of course, you are allowed to put loops inside functions
 You can also put in return statements
 A function will stop executing and jump back to wherever it

was called from when it hits a return
 The return statement is where you put the value that will be

given back to the caller

 Turtle is a tool that lets us draw simple pictures in Python
 To use Turtle, we first have to import the turtle library

 Then, we have to create a turtle
 I name mine yertle, but you can name it any legal variable

 Don't worry too much about this syntax

import turtle

yertle = turtle.Turtle()

 A turtle object has methods
 Methods let us tell the turtle to do things or ask it questions
 To call a method, you say the name of the turtle (yertle, in

my case), you put a dot, then you put the name of the method
you want, then parentheses, and sometimes information
between the parentheses
 The extra information are called parameters

 For example, to make yertle move forward 100 steps, type:

yertle.forward(100)

 The book has a much longer list, but here are a few useful turtle
methods

Method Parameter Description

forward Distance Move forward

backward Distance Move backward

left Angle Turn counter-clockwise

right Angle Turn clockwise

up None Pick up the turtle's tail (to stop drawing)

down None Put down the turtle's tail (to draw again)

heading None Return the angle the turtle is pointing

position None Return the position of the turtle

 First, import math at the top of your program
 After importing math, you still say math. before the name of a

function
 For example, to compute the cosine of 2.6 radians, you can do the

following:

 Note that all the trigonometry functions take radians, not degrees

import math
result = math.cos(2.6)

Return type Name Job

Integer ceil(x) Find the ceiling of x

Integer floor(x) Find the floor of x

Floating-point fabs(x) Find the absolute value of x

Floating-point sin(theta) Find the sine of angle theta

Floating-point cos(theta) Find the cosine of angle theta

Floating-point tan(theta) Find the tangent of angle theta

Floating-point exp(a) Raise e to the power of a (ea)

Floating-point log(a) Find the natural log of a

Floating-point pow(a, b) Raise a to the power of b (ab)

Floating-point sqrt(a) Find the square root of a

Floating-point degrees(radians) Convert radians to degrees

Floating-point radians(degrees) Convert degrees to radians

 The random library lets us produce random numbers
 It has two functions that will be useful to us:
 randint(a, b): Returns a random integer nwhere a ≤ n ≤ b
 random(): Returns a random floating-point value from [0, 1)

 To use them, import random and then call the functions
qualified by random followed by a period:

import random

dice = random.randint(1, 6)
percentage = random.random()

 Often, we want to repeat something
 The easiest way to do that in Python is with a for loop:

 All the statements in the for loop are repeated n times

for i in range(n):
statement1
statement2
statement3
…

 The range() function produces a sequence of values that a variable will
take on

 With only a single parameter n, the sequences of numbers is 0, 1, 2,…,n –
1 (but not n)

 With two parameters, a and b, the sequence starts at a and goes up to b
– 1 (but not b)

 With three parameters, a, b, and step, the sequence starts at a and
goes almost up to (but not including) b, taking steps of size step

for i in range(100):

for i in range(10,20):

for i in range(10,20,5):

 A design pattern is a problem-solving technique in coding in
which there is a standard way of do something that is used a lot

 Accumulator Pattern
 Produce a result by iterating over a sequence of values and accumulate

their sum (or other aggregation) along the way
 This example finds the sum of numbers from 1 up to 10:

acc = 0
for x in range(1, 11):

acc = acc + x

 To make choices in our program, we can use an if-statement:

 x is smallwill only print out if x is less than 5
 In this case, we know that it is, but x could come from user input

or a file or elsewhere

x = 4

if x < 5:
print('x is small!')

keyword
if

Any Boolean
expression

Any executable statements

if condition :
statement(s)

Note: The colon after the condition and the
indentation before the statement are required

 The most common condition you will find is a comparison
between two things

 In Python, that comparison can be:
 == equals
 != does not equal
 < less than
 <= less than or equal to
 > greater than
 >= greater than or equal to

 These are called relational operators

 You can also have multiple Boolean conditions in an if
statement

 You can join them together with:
 and (which results in a True value only if both the conditions it joins

are True)
 or (which result in a True value if either of the conditions it joins are
True)

if attempts < 5 and password == 'open sesame':
print('You know the secret!')

 Sometimes you have to make a decision
 If a condition is true, you go one way, if not, you go the other
 Both outcomes cannot happen
 For these situations, we use the else construct

Two different
outcomes

if condition :
A statements

else :
B statements

if balance < 0:
print('You are in debt!')

else:
print('You have $' + str(balance))

 What if you have a list of mutually exclusive conditions?
 You can tie all the possibilities together starting with if, then for each

additional condition, you use elif to check it, and then you can
optionally end with an else if none of the other conditions were met

if index == 1:
print('First')

elif index == 2:
print('Second')

elif index == 3:
print('Third')

else:
print(str(index) + "th")

 The string type can hold any number of characters, not just a
single letter

 A string literal is what we use whenever we print out text
 Strings can store text (up to some pretty large length, billions

of characters on 32-bit Python and much more in 64-bit) from
most of the different scripts in the world

text = 'message in a bottle'

 In Python, there's no difference at all between single quotes and double quotes

 If the string contains single quotes, we'll usually use double quotes

 Likewise, a string that contains double quotes is usually written with single
quotes

word1 = 'eggplant'
word2 = "eggplant" # exactly the same

message = "He earned an 'A'"

sentence = 'Bob said, "I refuse."'

 You can use + to concatenate two strings together (to get a
third string that is both of them stuck together)

 You can use * to get repetitions of a string

place = 'boon' + 'docks'
print(place) # prints boondocks

comment = 'yeah ' * 3
print(comment) # prints yeah yeah yeah

 You can use the len() function to get the length of a string

 You can use square brackets to get a particular character in the
string

 Indexes start at 0
 The first character in a string is at 0, the last is at its length - 1

author = 'Thomas Pynchon'
print(len(author)) # prints 14

movie = 'Dr. Strangelove'
print(movie[4]) # prints S

 You can also index from the back of a string instead of the front
 To do so, use negative numbers, where -1 is the last character in the string, -2 is

the second to last, and so on

 Be careful! If you index past the end or the beginning of the string, your code
will have an error

book = 'Harry Potter'
print(book[-1]) # prints r
print(book[-6]) # prints P

word = 'wombat'
print(word[6]) # error
print(word[-8]) # error

 If you want to get a substring (a part of a string) from a string,
you can use the slice notation
 Two numbers with a colon (:) in between
 The first number is the starting point, the second number is the

location after the ending point
 If you subtract the first from the last, you'll get the length of the

result

adjective = 'dysfunctional'
noun = adjective[3:6] # noun contains 'fun'

 You can leave off the first index and Python will assume 0

 Or you can leave off the last index and Python will assume the
length of the string

word = 'things'
width = word[:4] #width contains 'thin'

intelligence = 'smart'
craft = intelligence[2:] #craft contains 'art'

 The in operator will give a True if a string can be found
inside another string and False otherwise

 This can be useful in if statements

 You can also use not in if you want to see if a string is not
inside another strong

animal = 'jellyfish'
if 'fish' in animal:

print ("It's a fish!")
else:

print ('No fish here.')

 We can use a for loop to iterate over all the characters in a string
by using the length of the string and indexing into it

 We can also iterate over all the characters in a string directly with
a for loop

for i in range(len(text)):
print(text[i])

for letter in text: # equivalent to loop above
print(letter)

 We can convert a string with a single character in it into the
integer that represents it with the ord() function

 If you know the numerical value of a character, you can
convert that number back into a string using the chr()
function

number = ord('a') # number contains 97

letter = chr(100) # letter contains 'd'

 Everything in the computer is 1's and 0's
 Each character has a number associated with it
 These numbers are sometimes listed

in tables
 The ASCII table only covers 7 bits of information

(0-127)
 NEVER EVER TYPE THESE NUMBERS IN CODE
 What's important to know:
 All the characters are numbered
 The uppercase letters are contiguous
 The lowercase letters are contiguous
 The numerical digits are contiguous

 Encryption is the process of taking a message and encoding it
 Decryption is the process of decoding the code back into a

message
 A plaintext is a message before encryption
 A ciphertext is the message in encrypted form
 A key is an extra piece of information used in the encryption

process

 In the rail fence cipher, a message is written vertically along a fixed
number of "rails," wrapping back to the top when the bottom is reached

 To finish the encryption, the message is stored horizontally
 This is also known as a columnar transposition
 Encryption of "WE ARE DISCOVERED, FLEE AT ONCE" with three rails:

 Ciphertext: WRIORFEOEEESVELANXADCEDETCJ

W R I O R F E O E

E E S V E L A N X

A D C E D E T C J

 A shift cipher encrypts a message by shifting all of the letters
down in the alphabet

 Using the Latin alphabet, there are 26 (well, 25) possible shift
ciphers

 We can model a shift cipher by thinking of the letters A, B, C,
… Z as 0, 1, 2, … 25

 Then, we let the key k be the shift
 For a given letter with value x:

encrypt (x) = (x + k) mod 26

 E("KILL EDWARD") = "NLOO HGZDUG"
 What is E("I DRINK YOUR MILKSHAKE")?
 What is D("EUHDNLWGRZQ")?
 This code was actually used by Julius Caesar who used it to

send messages to his generals

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

 The Vigenère cipher is a form of polyalphabetic substitution
cipher

 In this cipher, we take a key word and "add" its letters to our
message

 Assuming letter values are in the range 0-25
 Add them together
 Mod by 26 to keep them in the range 0-25
 If they're not in that range, convert them to that range and then back

 If the message is longer than the keyword, we start the
keyword over again

 Key: BENCH
 Plaintext: A LIMERICK PACKS LAUGHS ANATOMICAL

B E N C H B E N C H B E N C H B E N C H B E N C H B E N C H

A L I M E R I C K P A C K S L A U G H S A N A T O M I C A L

B P V O L S M P M W B G X U S B Y T J Z B R N V V N M P C S

 Python provides a way to make lists of general objects
 To make a list, you can put a collection of objects inside

square brackets

 They can even be different types

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']

stuff = ['Danger!', 3, True, 1.7]

 Using the terminology introduced before, lists are:
 Heterogeneous: you can put different kinds of data into a list, but Python

programmers usually try not to do this, since it's confusing
 Sequential: items are stored in a particular order
 Mutable: individual items can be changed, and the size of the list can be

changed
 Delimited by []
 Indexed by integer position using []
 Negative indexing is allowed
 Slicing with [:] is supported

 As with strings, use square brackets and a number to access
an element in the list

 Like strings, elements are numbered from 0 to the length – 1
 You can use the len() function to get the length of a list

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']
bleh = days[0] # contains 'Monday'

count = len(days) # contains 7

 You can also change the elements in a list using the square
bracket notation

 This is one of the bigger differences between strings and
general lists

 You cannot change the characters in a string
 You have to make a new string

birds = ['Duck', 'Duck', 'Duck']
birds[2] = 'Goose'
print(birds) #prints ['Duck', 'Duck', 'Goose']

 Just like strings, you can use the slice notation to get a copy of
part of a list

 The same shortcuts for string slices still work:
 Python assumes 0 if you leave off the first number
 It assumes the length if you leave off the last number

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday']
weekend = days[5:7]
print(weekend) #prints ['Saturday', 'Sunday']

weekdays = days[:5] #Monday through Friday

 Like with strings, you can multiply a list by an integer to get a
list made up of multiple copies of the list repeated

greeting = ['Hello']
manyGreetings = greeting * 5
manyGreetings contains:
['Hello', 'Hello', 'Hello', 'Hello', 'Hello']

 Just like an empty string, you can have an empty list

 Such a list contains no items and has a length of zero

 Why would you want an empty list?

data = []

length = len(data)
print(length) #prints 0

 You can add elements to a list, empty or otherwise
 One way is by using the append()method, which adds

elements to the end of a list

 There are other ways to add (and remove) items from a list

data = []
data.append(3)
data.append(7)
data.append(8)
print(data) # prints [3, 7, 8]

Method Example Description

list list(range(100)) Make a list from the given sequence

append items.append('goat') Add an item to the end of the list

insert items.insert(4, 'thing') Insert an item at a location, moving everything else down

pop items.pop() Remove the last item in the list and return it

pop items.pop(5) Remove item at a given location ad return it

sort items.sort() Sort the list

reverse items.reverse() Reverse the list

index items.index('walnut') Return the first location where an item can be found

count items.count('apple') Count the occurrences of an item

remove items.remove('goat') Remove the first occurrence of an item

clear items.clear() Remove everything from a list

 Just as with strings, we can use a for loop to iterate over
everything in a list

 Directly:

 Or by using an index:

 The first version is simpler, but sometimes we need to know the
index

for item in list:
print(item)

for i in range(len(list)):
print(list[i])

 A dictionary goes by many names:
 Map
 Lookup table
 Symbol table

 The idea is a table that has a two columns, a key and a value
 You can store, lookup, and change the value based on the key

 You can create a dictionary in Python
 Enclosed in curly braces ({ })
 With a colon (:) between each key-value pair

superheroes = {'Spiderman' : 'Climbing and webs',
'Wolverine' : 'Super healing', 'Professor X' :
'Telepathy', 'Human Torch' :
'Flames and flying', 'Deadpool' :
'Super healing', 'Mr. Fantastic' : 'Stretchiness'}

 Like lists, you can index into a dictionary with square brackets
 Unlike lists, you put the key into the square brackets, not a

number

 You can also change the value for a given key with square brackets

print(superheroes['Spiderman'])
prints 'Climbing and webs'

superheroes['Spiderman'] = 'Science stuff'

 Dictionaries allow you to get a data structure that contains all the keys using the keys() method

 You can also get all the values using the values()method

 These structures aren't lists, but you can iterate over them with a for loop

print(superheroes.keys())
'Spiderman', 'Wolverine', etc.

print(superheroes.values())
'Climbing and webs', 'Super healing', etc.

for key in superheroes.keys():
print(key)

 The in operator lets us see if a key is in a dictionary

 You can also remove a key from a dictionary with the del
operator

if 'Spiderman' in superheroes:
print('We have a webslinger!')

del superheroes['Spiderman'] # no more Spiderman!

 Focus on quizzes
 Focus on assignments
 Memorizing things about Python is okay
 Practicing programming is better

 Hints:
 You will probably have to do something with turtle
 There might be some simple cryptography
 Loops, if statements, strings, lists, and dictionaries are all fair game

 Exam 1!

 Review chapters 1 through 4 of the textbook
 Work on Assignment 4

	COMP 1800
	Last time
	Questions?
	Assignment 4
	Review
	Exam 1
	Python Basics
	Problem solving
	Literals
	Variables
	Changing the value of a variable
	Variable names
	Operators
	Order of operations
	Converting between integers and floating-point
	Output
	Case Sensitivity
	Whitespace
	Comments
	Functions and Libraries
	Functions
	Defining a function
	return statements
	Turtle
	Methods
	Turtle methods
	Using math functions
	Some math functions
	Another useful library
	Loops
	for loops
	The range() function
	Patterns
	Selection Statements
	Behold!
	Anatomy of an if
	Comparison
	and and or
	Either/Or
	Anatomy of an if-else
	else example
	if and elif
	Strings
	The string type
	Single vs. double quotes
	String operations
	String operations continued
	Indexing backwards
	Slices
	More on slices
	The in operator
	Iterating over a string
	ord() and chr()
	ASCII table
	Cryptography
	Encryption and decryption
	Transposition cipher: Rail Fence Cipher
	Shift cipher
	Example: Caesar Cipher
	Vigenère cipher
	Vigenère example
	Lists
	Lists
	Lists
	Accessing an element
	Changing elements in a list
	Slices on lists
	Multiplying a list
	Empty list
	Adding elements to a list
	Useful list methods
	Looping over the contents of lists
	Dictionaries
	Dictionaries
	Dictionaries in Python
	Accessing values by key
	Keys and values
	Other dictionary operations
	Studying Advice
	Studying advice
	Quiz
	Upcoming
	Next time…
	Reminders

